Theory and Phenomenology of Exotic Isosinglet Quarks and Squarks

Brent D. Nelson
Northeastern University, Boston

with Paul Langacker and Junhai Kang
0708.2701 - to appear in Physical Review

Motivations

\Rightarrow Exotic $S U(2)$-singlet quarks appear in many contexts

- $S O(10), E_{6}, U(1)$-prime models, NMSSM,...
- Extremely common in semi-realistic string constructions
- Can be perfectly consistent with gauge coupling unification
\Rightarrow A rich laboratory for new physics to explore:
- Mixing
- Leptoquarks
- Diquarks
- Quasi-stable
\Rightarrow Good case study for "what-if" scenarios at the LHC... even within SUSY contexts!

A Framework: E_{6}-based Models

\Rightarrow Why E_{6} ?

- Logical coherence
- Smallest (non-anomalous) extension of the MSSM capable of producing all the above cases
- Long pedigree among model-builders
- Common in string constructions
\Rightarrow Standard Model gauge group typically extended by additional $U(1)$'s

$$
\begin{aligned}
E_{6} & \rightarrow S O(10) \times U(1)_{\psi} \\
& \rightarrow S U(5) \times U(1)_{\chi} \times U(1)_{\psi} \\
& \rightarrow S U(3) \times S U(2) \times U(1)_{Y} \times U(1)_{\chi} \times U(1)_{\psi}
\end{aligned}
$$

A Framework: E_{6}-based Models

\Rightarrow Why E_{6} ?

- Logical coherence
- Smallest (non-anomalous) extension of the MSSM capable of producing all the above cases
- Long pedigree among model-builders
- Common in string constructions
\Rightarrow Standard Model gauge group typically extended by additional $U(1)$'s

$$
\begin{aligned}
E_{6} & \rightarrow \\
& S O(10) \times U(1)_{\psi} \\
& \rightarrow S U(5) \times U(1)_{\chi} \times U(1)_{\psi} \\
& \rightarrow S U(3) \times S U(2) \times U(1)_{Y} \times U(1)_{\chi} \times U(1)_{\psi} \\
& \text { We will not consider true } E_{6} \text { GUTs! }
\end{aligned}
$$

- NO additional $S U(2)$ singlets and doublets
- NO Z'-bosons
- NO additional neutralinos
- NO GUT relations amongst Yukawa couplings
\Rightarrow Fundamental $\mathbf{2 7} \boldsymbol{\rightarrow} \mathbf{1 6}$ of $\mathbf{S O}(10)+\left\{D, D^{c}\right\},\{H, \bar{H}\}$ and singlet S

Field	Q_{Y}	$2 \sqrt{6} Q_{\psi}$	$2 \sqrt{10} Q_{\chi}$	$2 \sqrt{15} Q_{\eta}$
Q_{i}	$1 / 6$	1	-1	2
u_{i}^{c}	$-2 / 3$	1	-1	2
d_{i}^{c}	$1 / 3$	1	3	-1
L_{i}	$-1 / 2$	1	3	-1
e_{i}^{c}	1	1	-1	2
ν_{i}^{c}	0	1	-5	5
$\left(H_{u}\right)_{i}$	$1 / 2$	-2	2	-4
$\left(H_{d}\right)_{i}$	$-1 / 2$	-2	-2	-1
D_{i}	$-1 / 3$	-2	2	-4
D_{i}^{c}	$1 / 3$	-2	-2	-1
S_{i}	0	4	0	5

\Rightarrow In principle, as many as two surviving $U(1)$-primes... In practice, we only consider one combination:

$$
Q^{\prime}=Q_{\chi} \cos \theta_{E}+Q_{\psi} \sin \theta_{E} ; \quad U(1)_{\eta} \rightarrow \theta_{E}=2 \pi-\tan ^{-1} \sqrt{5 / 3}
$$

Superpotential Interactions

\Rightarrow Gauge invariant superpotential for E_{6} is simply $W=\lambda_{i j k} 27_{i} 27_{j} 27_{k}$

- Allowed couplings when broken into SM gauge group

$$
\begin{aligned}
W= & W_{0}+W_{\mathrm{LQ}}+W_{\mathrm{DQ}} \\
= & \lambda_{i j}^{1} Q_{i} u_{j}^{c} H_{u}+\lambda_{i j}^{2} Q_{i} d_{j}^{c} H_{d}+\lambda_{i j}^{3} L_{i} e_{j}^{c} H_{d}+\lambda_{i j}^{11} L_{i} \nu_{j}^{c} H_{u} \\
& +\lambda^{4} S H_{d} H_{u}+\lambda_{i j}^{5} S D_{i} D_{j}^{c}+W_{\mathrm{LQ}}+W_{\mathrm{DQ}}
\end{aligned}
$$

- Couplings of exotics to Standard Model fields

$$
\begin{array}{r}
W_{\mathrm{LQ}}=\lambda_{i j k}^{6} D_{i} u_{j}^{c} e_{k}^{c}+\lambda_{i j k}^{7} D_{i}^{c} Q_{j} L_{k}+\lambda_{i j k}^{8} D_{i} d_{j}^{c} \nu_{k}^{c} \\
W_{\mathrm{DQ}}=\lambda_{i j k}^{9} Q_{i} Q_{j} D_{k}+\lambda_{i j k}^{10} D_{i}^{c} u_{j}^{c} d_{k}^{c}
\end{array}
$$

Superpotential Interactions

\Rightarrow Gauge invariant superpotential for E_{6} is simply $W=\lambda_{i j k} \mathbf{2 7}_{i} \mathbf{2 7}_{j} \mathbf{2 7}_{k}$

- Allowed couplings when broken into SM gauge group

$$
\begin{aligned}
W= & W_{0}+W_{\mathrm{LQ}}+W_{\mathrm{DQ}} \\
= & \lambda_{i j}^{1} Q_{i} u_{j}^{c} H_{u}+\lambda_{i j}^{2} Q_{i} d_{j}^{c} H_{d}+\lambda_{i j}^{3} L_{i} e_{j}^{c} H_{d}+\lambda_{i j}^{11} L_{i} \nu_{j}^{c} H_{u} \\
& +\lambda^{4} S H_{d} H_{u}+\lambda_{i j}^{5} S D_{i} D_{j}^{c}+W_{\mathrm{LQ}}+W_{\mathrm{DQ}}
\end{aligned}
$$

- Couplings of exotics to Standard Model fields

$$
\begin{array}{r}
W_{\mathrm{LQ}}=\lambda_{i j k}^{6} D_{i} u_{j}^{c} e_{k}^{c}+\lambda_{i j k}^{7} D_{i}^{c} Q_{j} L_{k}+\lambda_{i j k}^{8} D_{i} d_{j}^{c} \nu_{k}^{c} \\
W_{\mathrm{DQ}}=\lambda_{i j k}^{9} Q_{i} Q_{j} D_{k}+\lambda_{i j k}^{10} D_{i}^{c} u_{j}^{c} d_{k}^{c}
\end{array}
$$

\Rightarrow Vacuum expectation value $\langle S\rangle \equiv s$ generates supersymmetric mass terms $\lambda_{4} s \equiv \mu_{\mathrm{eff}}$ and $\lambda_{5} s \equiv M_{D}$
\Rightarrow If both W_{LQ} and W_{DQ} then fast proton decay

- No unambiguous B and L quantum number possible for D, D^{c}

Masses and Charge Assignments

\Rightarrow Will thus assume a conserved B and L and choose $B(D)$ and $L(D)$ values
Leptoquark $B(D)=1 / 3$ and $L(D)=1$; only W_{LQ} allowed
Diquark $B(D)=-2 / 3$ and $L(D)=0$; only W_{DQ} allowed
Standard $B(D)=1 / 3$ and $L(D)=0$; both W_{LQ} and W_{DQ} forbidden

Masses and Charge Assignments

\Rightarrow Will thus assume a conserved B and L and choose $B(D)$ and $L(D)$ values
Leptoquark $B(D)=1 / 3$ and $L(D)=1$; only W_{LQ} allowed
Diquark $B(D)=-2 / 3$ and $L(D)=0$; only W_{DQ} allowed
Standard $B(D)=1 / 3$ and $L(D)=0$; both W_{LQ} and W_{DQ} forbidden
\Rightarrow Scalar mass matrices depend on SUSY breaking and $U(1)$-prime charges

$$
\begin{aligned}
& m_{\widetilde{D}}^{2}=\left(\begin{array}{cc}
m_{a a}^{2} & m_{a b}^{2} \\
m_{a b}^{2} & m_{b b}^{2}
\end{array}\right) \\
& m_{a a}^{2}=m_{\widetilde{D}}^{2}+m_{D}^{2}+\frac{1}{3} \sin ^{2} \theta_{W} \cos 2 \beta M_{Z}^{2}+g^{\prime 2} Q_{D}^{\prime}\left(Q_{S}^{\prime} s^{2}+Q_{H_{u}}^{\prime} v_{u}^{2}+Q_{H_{d}}^{\prime} v_{d}^{2}\right) \\
& m_{b b}^{2}=m_{\widetilde{D}^{c}}^{2}+m_{D}^{2}-\frac{1}{3} \sin ^{2} \theta_{W} \cos 2 \beta M_{Z}^{2}+g^{\prime 2} Q_{D^{c}}^{\prime}\left(Q_{S}^{\prime} s^{2}+Q_{H_{u}}^{\prime} v_{u}^{2}+Q_{H_{d}}^{\prime} v_{d}^{2}\right) \\
& m_{a b}^{2}= m_{D}\left(A_{5}+\mu_{\text {eff }}\left(\frac{v_{u} v_{d}}{s^{2}}\right)\right),
\end{aligned}
$$

Our Benchmark Cases

Sample spectra for the exotic SUSY sector

Parameter	A	B	C	D	E	
$M_{D_{1 / 2}}$	300	300	300	600	1000	
$m_{D_{0}}$	400	400	1000	400	400	
$m_{D_{0}^{c}}$	400	400	1000	400	400	
A_{5}	350	150	100	600	1050	
$U(1)_{\eta}$ Model						
$M_{D_{0}^{1}}$	367	441	1024	388	318	
$M_{D_{0}^{2}}$	587	553	1053	932	1482	

(All values are in GeV at the electroweak scale)
\Rightarrow It is convenient to define the mass splitting measurs

$$
\Delta_{1} \equiv m_{D_{1 / 2}}-m_{D_{0}^{1}} ; \quad \Delta_{2} \equiv m_{D_{1 / 2}}-m_{D_{0}^{2}}
$$

$\Delta_{1}<0 \rightarrow$ fermion lightest exotic particle (LEP)

Some Sample Patterns for Splitting Δ_{1}

Fixed fermion mass
$M_{D}=300 \mathrm{GeV}$

Fixed (common) scalar mass

$$
M_{D_{0}}=m_{\widetilde{D}}=m_{\widetilde{D}^{c}}=400 \mathrm{GeV}
$$

$\Delta_{1}<0 \rightarrow$ fermion lightest exotic particle (LEP)

Future Reference: SPS1A

\Rightarrow For comparison, consider the particle spectrum for Snowmass Point 1A

Parameter	SPS 1A	Parameter	SPS 1A
$m_{\tilde{N}_{1}}$	99.9	$m_{\tilde{t}_{1}}$	381.4
$m_{\tilde{N}_{2}}$	188.4	$m_{\tilde{t}_{2}}$	587.3
$m_{\widetilde{N}_{3}}$	375.5	$m_{\tilde{c}_{1}}, m_{\tilde{u}_{1}}$	535.3
$m_{\tilde{N}_{4}}$	394.0	$m_{\tilde{c}_{2}}, m_{\tilde{u}_{2}}$	554.5
$m_{\widetilde{C}_{1}^{ \pm}}$	187.7	$m_{\tilde{b}_{1}}$	504.5
$m_{\tilde{C}_{2}^{ \pm}}$	394.7	$m_{\tilde{b}_{2}}$	535.0
$m_{\tilde{g}}$	627.9	$m_{\tilde{s}_{1}}, m_{\tilde{d}_{1}}$	534.4
B-ino\%	97.4%	$m_{\tilde{s}_{2}}, m_{\tilde{d}_{2}}$	559.3
m_{h}	111.7	$m_{\tilde{\tau}_{1}}$	145.5
m_{A}	412.7	$m_{\tilde{\tau}_{2}}$	220.6
$m_{H}^{ \pm}$	420.3	$m_{\tilde{\mu}_{1}}, m_{\tilde{e}_{1}}$	145.8
μ	369.4	$m_{\tilde{\mu}_{2}}, m_{\tilde{e}_{2}}$	211.4

\Rightarrow Signatures at the LHC depend on how Δ_{i} compare to SUSY mass values

Modifying PYTHIA

\Rightarrow The entire exotic sector was added to PYTHIA

- Six new states: $D_{1 / 2}^{\mathrm{LQ}},\left(D_{0}^{\mathrm{LQ}}\right)_{1,2}, D_{1 / 2}^{\mathrm{DQ}},\left(D_{0}^{\mathrm{DQ}}\right)_{1,2}$
- SUSY and non-SUSY decay modes for each state (more later)
- New production processes:

$$
\begin{aligned}
& \text { * } q+\bar{q} \rightarrow D_{1 / 2}^{\mathrm{LQ}}+\overline{D_{1 / 2}^{\mathrm{LQ}}}, D_{1 / 2}^{\mathrm{DQ}}+\overline{D_{1 / 2}^{\mathrm{DQ}}} \\
& g+g \rightarrow D_{1 / 2}^{\mathrm{LQ}}+\overline{D_{1 / 2}^{\mathrm{LQ}}}, D_{1 / 2}^{\mathrm{DQ}}+\overline{D_{1 / 2}^{\mathrm{DQ}}} \\
& q+\bar{q} \rightarrow\left(D_{0}^{\mathrm{LQ}}\right)_{i}+\left(\overline{D_{0}^{\mathrm{LQ}}}\right)_{j},\left(D_{0}^{\mathrm{DQ}}\right)_{i}+\left(\overline{\left.D_{0}^{\mathrm{DQ}}\right)_{j}}\right. \\
& \star g+g \rightarrow\left(D_{0}^{\mathrm{LQ}}\right)_{i}+\left(\overline{D_{0}^{\mathrm{LQ}}}\right)_{j},\left(D_{0}^{\mathrm{DQ}}\right)_{i}+\left(\overline{D_{0}^{\mathrm{DQ}}}\right)_{j} \\
& \text { * } q+g \rightarrow\left(D_{0}^{\mathrm{LQ}}\right)_{i}+e^{-} \text {or } \nu_{e} \\
& \star \bar{q}+g \rightarrow\left(D_{0}^{\mathrm{DQ}}\right)_{i}+\bar{q} \\
& \text { * } \bar{u}+\bar{d} \rightarrow\left(D_{0}^{\mathrm{DQ}}\right)_{i} \text { (resonant production) }
\end{aligned}
$$

\Rightarrow New color flow algorithms for diquark interactions....

Modifying PYTHIA

\Rightarrow The entire exotic sector was added to PYTHIA

- Six new states: $D_{1 / 2}^{\mathrm{LQ}},\left(D_{0}^{\mathrm{LQ}}\right)_{1,2}, D_{1 / 2}^{\mathrm{DQ}},\left(D_{0}^{\mathrm{DQ}}\right)_{1,2}$
- SUSY and non-SUSY decay modes for each state (more later)
- New production processes:

$$
\begin{aligned}
& \text { * } q+\bar{q} \rightarrow D_{1 / 2}^{\mathrm{LQ}}+\overline{D_{1 / 2}^{\mathrm{LQ}}}, D_{1 / 2}^{\mathrm{DQ}}+\overline{D_{1 / 2}^{\mathrm{DQ}}} \\
& g+g \rightarrow D_{1 / 2}^{\mathrm{LQ}}+\overline{D_{1 / 2}^{\mathrm{LQ}}}, D_{1 / 2}^{\mathrm{DQ}}+\overline{D_{1 / 2}^{\mathrm{DQ}}} \\
& q+\bar{q} \rightarrow\left(D_{0}^{\mathrm{LQ}}\right)_{i}+\left(\overline{D_{0}^{\mathrm{LQ}}}\right)_{j},\left(D_{0}^{\mathrm{DQ}}\right)_{i}+\left(\overline{\left.D_{0}^{\mathrm{DQ}}\right)_{j}}\right. \\
& \star g+g \rightarrow\left(D_{0}^{\mathrm{LQ}}\right)_{i}+\left(\overline{D_{0}^{\mathrm{LQ}}}\right)_{j},\left(D_{0}^{\mathrm{DQ}}\right)_{i}+\left(\overline{D_{0}^{\mathrm{DQ}}}\right)_{j} \\
& \text { * } q+g \rightarrow\left(D_{0}^{\mathrm{LQ}}\right)_{i}+e^{-} \text {or } \nu_{e} \\
& \star \bar{q}+g \rightarrow\left(D_{0}^{\mathrm{DQ}}\right)_{i}+\bar{q} \\
& \text { * } \bar{u}+\bar{d} \rightarrow\left(D_{0}^{\mathrm{DQ}}\right)_{i} \text { (resonant production) }
\end{aligned}
$$

\Rightarrow New color flow algorithms for diquark interactions....ACK!!

$$
W_{\mathrm{DQ}}=\lambda_{i j k}^{9} Q_{i} Q_{j} D_{k}+\lambda_{i j k}^{10} D_{i}^{c} u_{j}^{c} d_{k}^{c}
$$

Pair Production at the LHC

Associated Production at the LHC

Leptoquark associated production

$$
\left(q+g \rightarrow D_{0}^{\mathrm{LQ}}+\ell, \nu\right)
$$

Diquark associated production

$$
\left(\bar{q}+g \rightarrow D_{0}^{\mathrm{DQ}}+\bar{q}\right)
$$

\Rightarrow Large production cross-sections...should we have seen them by now?

Bounds: Direct Searches

Diquarks

- Search for resonant scalar production and subsequent decays into two jets
- Assuming $\operatorname{Br}\left(D_{0}^{\mathrm{DQ}} \rightarrow \bar{q} \bar{q}\right)=1$, CDF excludes $300 \mathrm{GeV} \lesssim m_{D_{0}^{1}} \lesssim 450 \mathrm{GeV}$ at 95\% C.L.
- Limit essentially disappears for smaller $\operatorname{Br}\left(D_{0}^{\mathrm{DQ}} \rightarrow \bar{q} \bar{q}\right)$

Leptoquarks

- Limits on scalar leptoquark pair production at Tevatron as a function of $\operatorname{Br}\left(D_{0}^{\mathrm{LQ}} \rightarrow \ell q\right)$ and $\operatorname{Br}\left(D_{0}^{\mathrm{LQ}} \rightarrow \nu q\right)$ at 95% C.L.:

$$
\begin{aligned}
& m_{D_{0}^{1}} \geq 256,234,145 \mathrm{GeV} \text { for } \operatorname{Br}\left(D_{0}^{\mathrm{LQ}} \rightarrow e q\right)=1,0.5,0.1 \\
& m_{D_{0}^{1}} \geq 251,208,143 \mathrm{GeV} \text { for } \operatorname{Br}\left(D_{0}^{\mathrm{LQ}} \rightarrow \mu q\right)=1,0.5,0.1
\end{aligned}
$$

- HERA (H1 and ZEUS) limits, assuming $\operatorname{Br}\left(D_{0}^{\mathrm{LQ}} \rightarrow \ell q\right)=\operatorname{Br}\left(D_{0}^{\mathrm{LQ}} \rightarrow \nu q\right)$:

$$
\begin{aligned}
& m_{D_{0}^{1}} \gtrsim 290 \text { for } \lambda^{9}=\lambda^{10} \equiv \lambda=0.3 \\
& m_{D_{0}^{1}} \gtrsim 270 \text { for } \lambda^{9}=\lambda^{10} \equiv \lambda=0.1
\end{aligned}
$$

Prompt Decay Final States

Fermionic LEP
Scalar LEP
Case A Case B Case C Case D Case E

Decay	$D_{1 / 2}$	D_{0}^{1}								
partner $+\widetilde{\chi}_{1}^{0}$				\checkmark		\checkmark	\checkmark		\checkmark	
partner $+\widetilde{\chi}_{2}^{0}$						\checkmark	\checkmark		\checkmark	
partner $+\widetilde{\chi}_{3}^{0}$						\checkmark			\checkmark	
partner $+\widetilde{\chi}_{4}^{0}$						\checkmark			\checkmark	
partner $+\widetilde{g}$						\checkmark			\checkmark	
$\tilde{f}+f^{\prime}$	\checkmark LQ	NA	\checkmark LQ	NA	\checkmark LQ	NA	\checkmark	NA	\checkmark	NA
$f+f^{\prime}$	NA	\checkmark								
$\widetilde{\chi}_{1}^{0}+f+f^{\prime}$	\checkmark DQ		\checkmark DQ		\checkmark DQ					

Masses for $U(1)_{\eta}$ model (GeV)

Leptoquark Production at the LHC

Pair production

$q+g \rightarrow D_{0}^{\mathrm{LQ}}+\ell, \nu$

Events at LHC with $5 \mathrm{fb}^{-1}$ integrated luminosity

SPS 1a	Case A	Case B	Case C	Case D	Case E
185,544	161,284	156,020	152,342	11,589	17,921

Discovery of New Physics

- Most inclusive SUSY discovery tool: $M_{\mathrm{eff}}=p_{T, 1}+p_{T, 2}+p_{T, 3}+p_{T, 4}+E_{T}$

- Event selection criteria:
* $N_{\text {jets }} \geq 4$, with $p_{T, 1}^{\text {jet }} \geq 100 \mathrm{GeV}$ and $p_{T, i}^{\text {jet }} \geq 50 \mathrm{GeV}$ for $i=2,3,4$ No isolated leptons with $p_{T} \geq 20 \mathrm{GeV}$
Transverse sphericity $S \geq 0.2$
Missing E_{T} of at least 100 GeV

Discovery of New Physics

- Most inclusive SUSY discovery tool: $M_{\mathrm{eff}}=p_{T, 1}+p_{T, 2}+p_{T, 3}+p_{T, 4}+E_{T}$

Baer, Chen, Paige, Tata, PRD52 (1995) 2746

- Event selection criteria:
$* N_{\text {jets }} \geq 4$, with $p_{T, 1}^{\text {jet }} \geq 100 \mathrm{GeV}$ and $p_{T, i}^{\text {jet }} \geq 50 \mathrm{GeV}$ for $i=2,3,4$ No isolated leptons with $p_{T} \geq 20 \mathrm{GeV}$
Transverse sphericity $S \geq 0.2$
Missing E_{T} of at least 100 GeV

Where are the exotic events?

- Try something more inclusive: $M_{\mathrm{eff}}=\sum_{i}^{\text {all }} p_{T, i}+E_{T}$

- Event selection criteria:
* $N_{\text {jets }} \geq 2$, with $p_{T, i}^{\text {jet }} \geq 50 \mathrm{GeV}$
* Any number of isolated leptons with $p_{T} \geq 10 \mathrm{GeV}$
* Transverse sphericity $S \geq 0.2$
* Missing E_{T} of at least 100 GeV

Inclusive Signature Counts: LQ Cases D and E

Inclusive signatures (all have $E_{T} \geq 100 \mathrm{GeV}, S \geq 0.2$)

- (A) Inclusive multijets with $N_{\text {jets }} \geq 3$, no isolated leptons, $p_{T, i}^{\text {jet }} \geq 100 \mathrm{GeV}$ for $i=1,2,3$
- (B) One lepton plus jets
- (C) OS dileptons plus jets
- (D) SS dileptons plus jets
- (E) Trileptons plus jets
- (F) Three taus plus jets

Leptons/taus must be isolated with
$p_{T} \geq 20 \mathrm{GeV}$
For (B)-(F) we require $N_{\text {jets }} \geq 2$,
$p_{T, 1}^{\text {jet }} \geq 100 \mathrm{GeV}, p_{T, 2+}^{\text {jet }} \geq 50 \mathrm{GeV}$

"The Background to SUSY is More SUSY"

Inclusive signatures
(all have $E_{T} \geq 100 \mathrm{GeV}, S \geq 0.2$)

- (A) Inclusive multijets with $N_{\text {jets }} \geq 3$, no isolated leptons,

$$
p_{T, i}^{\text {jet }} \geq 100 \mathrm{GeV} \text { for } i=1,2,3
$$

- (B) One lepton plus jets
- (C) OS dileptons plus jets
- (D) SS dileptons plus jets
- (E) Trileptons plus jets
- (F) Three taus plus jets

Leptons/taus must be isolated with $p_{T} \geq 20 \mathrm{GeV}$
For (B)-(F) we require $N_{\text {jets }} \geq 2$, $p_{T, 1}^{\text {jet }} \geq 100 \mathrm{GeV}, p_{T, 2+}^{\text {jet }} \geq 50 \mathrm{GeV}$

Add Fermionic LEP Cases

Inclusive signatures
(all have $E_{T} \geq 100 \mathrm{GeV}, S \geq 0.2$)

- (A) Inclusive multijets with $N_{\text {jets }} \geq 3$, no isolated leptons,

$$
p_{T, i}^{\text {jet }} \geq 100 \mathrm{GeV} \text { for } i=1,2,3
$$

- (B) One lepton plus jets
- (C) OS dileptons plus jets
- (D) SS dileptons plus jets
- (E) Trileptons plus jets
- (F) Three taus plus jets

Leptons/taus must be isolated with $p_{T} \geq 20 \mathrm{GeV}$
For (B)-(F) we require $N_{\text {jets }} \geq 2$, $p_{T, 1}^{\text {jet }} \geq 100 \mathrm{GeV}, p_{T, 2+}^{\text {jet }} \geq 50 \mathrm{GeV}$

Missing Transverse Energy Distribution

Correlation: Leptonic Effective Mass with E_{T}

Case A: Events with two or more leptons

Correlation: Leptonic Effective Mass with E_{T}

Case A: Events with two or more leptons

Isolating the Exotic Component

- Form invariant mass of hardest lepton and second hardest jet in the event

- Event selection criteria:
* Precisely two jets and two opposite-sign leptons, no E_{T} cut
* Veto B-jets and demand both jets have $p_{T} \geq 50 \mathrm{GeV}$
* Require transverse sphericity $S \leq 0.7$
* Hardest lepton must have $p_{T} \geq 50 \mathrm{GeV}$, trailing lepton must have $p_{T} \geq 20 \mathrm{GeV}$

Isolating the Exotic Component

- Form invariant mass of hardest lepton and second hardest jet in the event

- Event selection criteria:
* Precisely two jets and two opposite-sign leptons, no E_{T} cut
* Veto B-jets and demand both jets have $p_{T} \geq 50 \mathrm{GeV}$
* Require transverse sphericity $S \leq 0.7$
* Hardest lepton must have $p_{T} \geq 50 \mathrm{GeV}$, trailing lepton must have $p_{T} \geq 20 \mathrm{GeV}$

Dilepton Invariant Mass Distribution

- Flavor-subtracted invariant mass of dilepton pairs

$$
M_{\mathrm{inv}}\left(e^{+} e^{-}+\mu^{+} \mu^{-}-e^{+} \mu^{-}-\mu^{+} e^{-}\right)
$$

- Event selection criteria:
* $N_{\text {jets }} \geq 4$ with $p_{T, 1} \geq 150 \mathrm{GeV}, p_{T, 2} \geq 100 \mathrm{GeV}$ and $p_{T, 3} \geq 50 \mathrm{GeV}$
* Precisely two leptons, each having $p_{T} \geq 15 \mathrm{GeV}$
* Missing E_{T} of at least 150 GeV

Dilepton Invariant Mass Distribution

- Flavor-subtracted invariant mass of dilepton pairs

$$
M_{\mathrm{inv}}\left(e^{+} e^{-}+\mu^{+} \mu^{-}-e^{+} \mu^{-}-\mu^{+} e^{-}\right)
$$

- "Lowest rung" on SUSY mass reconstruction ladder
- Degradation in kinematic edge measurement \Rightarrow uncertainty in reconstructing $m_{\chi_{2}^{0}}-m_{\chi_{1}^{0}}$
- All other exclusive measurements/reconstructions hang on this initial measurement!

Conclusions and Outlook

$\Rightarrow \mathrm{SU}(2)$-singlet quarks the simplest, well-motivated extension of the MSSM - yet hardly studied at the LHC
\Rightarrow Some "rethinking" of our SUSY-playbook is in order
\Rightarrow Future interesting directions:

- Try fitting plain-vanilla MSSM to these inclusive signatures - where (and when) do the fits break down?
- How robust are SUSY extraction \& measurement algorithms?
- Need a more sophisticated treatment of diquark cases
- Can we reconstruct the exotic fermion in these cases? Can the associated production mode be observed?
\Rightarrow "What-if" cases like these are good practice for the LHC data era!

Supporting Slides

Bounds: Indirect Limits

\Rightarrow Indirect constraints more model dependent: family structure, $B(D)$ and $L(D)$ assignments, $U(1)$-prime charges, SUSY breaking etc.
\Rightarrow For our leptoquarks, strongest constraint is $\mu-e$ conversion

- Exchange of D_{0}, D_{0}^{c} in the s-channel (fewer diagrams than \mathbb{R}_{p} MSSM)
- Limit from SINDRUM II: $\quad \frac{\sigma\left(\mu^{-} T_{i} \rightarrow e^{-} T_{i}\right)}{\sigma\left(\mu^{-} T_{i} \rightarrow \text { capture }\right)}<4.3 \times 10^{-13}$

$$
\Rightarrow \lambda^{6,7}<3 \times 10^{-4}\left(\frac{m_{D_{0}}}{100 \mathrm{GeV}}\right)
$$

\Rightarrow For our diquarks, strongest constraint is $K_{L}-K_{S}$ mass difference

- Most important contribution is box diagram with two exotic supermultiplets with two u, c, t supermultiplets
- Assuming external d and s and internal u a typical bound is

$$
\lambda^{9,10}<0.04\left(\frac{\max \left(m_{\tilde{u}_{i}}, m_{D_{0}}\right)}{100 \mathrm{GeV}}\right)^{1 / 2}
$$

Quasi-Stable: Hadronization

\Rightarrow Exotics stable on timescale of detector will hadronize $\Rightarrow R$-hadrons

- Exotic component can be scalar or fermion
- Can produce LEP in pairs or NLEP with cascade decays to LEP
- R-hadrons contain one less active quark than split-SUSY analogs (total cross section for interaction with nucleons reduced)
\Rightarrow Lowest-lying R-hadrons: $D \bar{d}, D \bar{u}, D d d, D u u$ and two combinations of $D d u$ (plus anti-states).
- Bulk of R-hadron mass accounted for by exotic
- Exotic component largely sterile in interactions
- R-mesons lightest, approximately degenerate in mass
- Of R-baryons, neutral Dud in s-wave configuration lighter than p-wave or charged Ddd, Duu states

R-hadrons in the Calorimeter System

\Rightarrow Interactions: elastic scattering off nucleons, charge-exchange interactions, meson-to-baryon/baryon-to-meson interactions

- R-mesons $D \bar{q}$ transition to baryons by producing a light pion \Rightarrow resulting $D q q$ R-baryon remains a baryon (absence of anti-quarks in detector material)
- R-baryon $D^{c} \bar{q} \bar{q}$ rapidly transitions to R-meson $D^{c} q$ through quark/anti-quark annihilation $\Rightarrow \mathrm{R}$-meson $D^{c} q$ remains an R -meson throughout calorimeter
- Typical interaction crosssection $\sim 12 \mathrm{mb}$ (mesons), $\sim 24 \mathrm{mb}$ (baryons)
- Implies 6-10 interactions through calorimeter
- Typical energy loss per interaction is $0.2-2.2 \mathrm{GeV}$ for $E_{\text {kin }} \sim 400 \mathrm{GeV}$
A. Kraan, Eur. Phys. Jour., C37 (2004)

R-hadrons in the Muon System

\Rightarrow Most (but not all) R-hadrons punch-through to muon system

- D's arrive as neutral R-baryons, D^{c} s as neutral or charged R-mesons
- Charged R-mesons leave track in muon system
- Particle ID: β typically much lower than that for muons
\Rightarrow Key observable is time-of-flight (TOF) across some fiducial length
- Temporal resolution in muon system at ATLAS/CMS is $\sigma_{t} \sim 1.5 \mathrm{~ns}$
- Restive plate chambers spaced apx. 1 meter apart; separation between first and last plate ~ 3 meters
- Require Δ TOF across 3 m for exotic relative to $\beta \simeq 1$ muon to be greater than 3 ns
- Also require arrival at muon chamber within $18 \mathrm{~ns}\left(\beta_{D} \geq 0.5\right.$)

Nisati, Petrarca, Salvini, Mod. Phys. Lett., A12 (1997)
\Rightarrow Using TOF in the muon system provides highly significant S / \sqrt{B}
Kraan, Hansen, Nevski, hep-ex/0511014 (2005)

Triggering

\Rightarrow Low-level triggers look at calorimetery and muon system individually

- Direct production of LEP pairs \Rightarrow little $E_{T}^{\text {sum }}$ in calorimeter (typically 10-50 GeV)
- Produced back-to-back in c.m. frame \Rightarrow little $E_{T}^{\text {miss }}$ as well
- Remains true if NLEP pair produced with, e.g., $D_{0} \rightarrow D_{1 / 2} \widetilde{\chi}_{1}^{0}$ (typically $E_{T}^{\text {miss }} \lesssim 35 \mathrm{GeV}$)
- Can trigger on the (single) muon track if minimum threshold for p_{T} is met (we take $p_{T}^{\min }=15 \mathrm{GeV}$).

Quasi-Stable: Overall Acceptance

Benchmark Point

	A	B	C	D	E
Geom. Accept.	75.5%	79.9%	82.3%	86.8%	82.5%
Charged Frac.	25.2%	25.0%	25.1%	25.2%	25.4%
Temp. Accept.	82.7%	82.8%	81.9%	79.1%	76.9%
TOF	97.3%	96.5%	97.2%	97.3%	97.0%
Total Accept.	15.3%	16.0%	16.5%	16.9%	15.6%
$N_{\text {signal }}\left(\times 10^{3}\right)$	120	119	119	11.2	26.6
$N_{\text {stop }}\left(\times 10^{3}\right)$	11.1	10.8	11.3	1.36	4.56

- Geometrical acceptance represents the fraction of R-hadrons that are produced with $|\eta| \leq 2.4$
- Temporal acceptance represents the fraction of charged non-stopping R-hadrons that arrive within 18 ns of the primary interaction for the event
- The percentage that traverse a 3 meter fiducial distance at least 3 ns slower than a $\beta=1$ muon would is given by TOF
- The product of these fractions is the total acceptance
- The number of signal events (as well as the number of stopping R-hadrons) is given for $10 \mathrm{fb}^{-1}$ of integrated luminosity

Quasi-Stable: Reach at LHC

